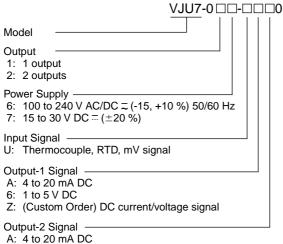
General Specifications

GS 77J01U07-01E

Model VJU7
Universal Temperature Converter
(Isolated Single-output and Isolated
Dual-output Types)


NTXUL

■ General

This plug-in type universal temperature converter converts input signal (thermocouple, RTD or mV signal) into isolated DC voltage signal or DC current signal.

- Universal input enables selection of input type (thermocouple, RTD, mV signal) and of measuring ranges within specifications.
- DC voltage signal, DC current signal, communication output (RS485), or alarm output (2 relay contacts) is selectable as output-2.
- Change of input types / input ranges/burnout action, and I/
 O monitoring etc. can be done through Handy Terminal
 (JHT200 etc.).

■ Specifications

6: 1 to 5 V DC

P: Communication function (RS485)

T: Alarm output (2 relay contacts)

N: No output-2

■ Input

Input Signal Type:

Thermocouple (ITS-90): Type K, T, E, J, R, S, B, N, W3 (see Note 1), W5 (see Note 2)

Note 1: W3 is the abbreviation of W97Re3-W75Re25 (tungsten97 % rhenium 3 % - tungsten75 % rhenium25 %) ASTM E988 Standard

Note 2: W5 is the abbreviation of W95Re5-W74Re26 (tungsten95 % rhenium 5 % - tungsten74 % rhenium 26 %) ASTM E988 Standard RTD : Pt100 (ITS-90), JPt100 (JIS'89) Pt50 Ω (JIS'81), Pt100 (IPTS-68)

 $\begin{array}{lll} {\rm Pt100~(ITS-90)} & :R_0{=}100~\Omega,~R_{_{100}}/R_0{=}1.3851\\ {\rm JPt100~(JIS'89)} & :R_0{=}100~\Omega,~R_{_{100}}/R_0{=}1.3850\\ {\rm Pt100~\Omega~(IPTS-68)} :R_0{=}100~\Omega,~R_{_{100}}/R_0{=}1.3916\\ {\rm mV~signal} :{\rm Can~be~set~within~-10~to~100~mV} \end{array}$

Table 1 Input Type and Range

Input Type	Range		
TC sensor type	(°C)		
Type K	-200 to 1200		
Type E	-200 to 800		
Type J	0 to 750		
Type T	-200 to 350		
Type R	0 to 1600		
Type S	0 to 1600		
Type B	600 to 1700		
Type N	-200 to 1200		
Type W3	0 to 2000		
Type W5	0 to 2000		
RTD sensor type	(°C)		
Pt100(ITS-90)	-200 to 660		
Pt100(IPTS-68)	-200 to 660		
JPt100(JIS'89)	-200 to 510		
Pt50(JIS'81)	-200 to 649		
mV (DC voltage)	mV DC		
	-10 to 100		
	•		

Measuring Span: 3 mV or more (thermocouple, mV signal) 10 °C or more (RTD)

Input Resistance: $1~M\Omega$ (when power on), $4~k\Omega$ (when power off) when thermocouple, mV input Input External Resistance:

Thermocouple, mV signal: 500 Ω or less

However, when combination with BARD200, it is the value connectable as external resistance besides internal resistance.

RTD: Input span (°C) \times 0.4 Ω or less / wire or 10

 Ω or less, whichever smaller

However, when combination with BARD 300, it is the value connectable as external resistance besides internal resistance.

RTD Detective Current: About 0.5 mA

Permissible Applicable Voltage: ±4 V DC or less

■ Output

1. Output-1

Output Signal	Output Resistance	Permissible Load Resistance		
1 to 5 V DC	1 Ω or less	2 k Ω or more		
4 to 20 mA DC	500 k Ω or more	750 Ω or less		

Custom Order Output Signal

2 to 10 mA DC, 1 to 5 mA DC, 0 to 20 mA DC, 0 to 16 mA DC, 0 to 10 mA DC, 0 to 1 mA DC 0 to 10 mV DC, 0 to 1 V DC, 0 to 10 V DC, 0 to 5 V DC, -10 to +10 V DC

2. Output -2

Analog Output

Output Signal	Output Resistance	Permissible Load Resistance		
1 to 5 V DC	1 Ω or less	2 k Ω or more		
4 to 20 mA DC	500 k Ω or more	350 Ω or less		

Communication Function

This transmitter can be connected to a personal computer, graphic panel, YOKOGAWA programmable controller FA-M3, or programmable controllers of other manufacturers.

Standards: EIA RS485

Maximum number of connectable controllers:

31 controllers

Maximum communication distance: 1200 m

Communication method: 2-wire half duplex, start-stop

synchronization, non-procedural

Communication rate: 1200, 2400, 4800, 9600 bps

Data length: 8, 7 bit Stop bit: 1, 2 bit

Parity: Even parity, odd parity, or none

Communication protocol: PC-link, PC-link with SUM,

 $MODBUS\ ASCII, MODBUS\ RTU, or$

LADDER

PC-link communication: Communication protocol with a personal computer, graphic panel, UT link

module of FA-M3

MODBUS communication: Communication protocol with a personal computer (SCADA).

Ladder communication: Communication protocol with ladder communication module of FA-M3 and programmable controller of other manufacturers

■ Alarm Output

Signal Type: Relay contact

Output Signal: N. O. contact output (contact ON at excitation) 2 points, COM common

Contact Capacity: 30 V DC, 1 A

Alarm Operating Direction: High limit alarm or low limit alarm

Relay Operating Direction Setting: Excitation or nonexcitation at normal status Alarm Setting Ranges: 0 to 100 % of input range

Temperature input [°C], mV input [%]

Setting resolution: 0.1 °C or 0.1 %, 4 significant digits

Hystoregis: Set the value added to alarm setting point at

Hysteresis: Set the value added to alarm setting point at alarm release

Setting range: 0 to 100 % of input range

Temperature input [°C], mV input [%]

Setting resolution: $0.1~^{\circ}\text{C}$ or 0.1~%, 4 significant digits Alarm On-Delay Setting: Delay time from alarm condition

completion to output

(Ex. Outputted when alarm status continues for 1 second or more after input value is over alarm point in case of set value "1 second.")

Setting range: 0 to 999 seconds

Setting resolution: 1 second (however, add about

0.2 seconds to setting time to prevent wrong operation)

Alarm Off-Delay Setting: Delay time from alarm normal condition completion to output

(Ex. Released when normal status continues for 2 seconds or more after input value becomes normal status from alarm status in case of set value "2 seconds.")

Setting range: 0 to 999 seconds

Setting resolution: 1 second (however, add about

0.2 seconds to setting time to prevent wrong operation)

Alarm Operation Display: Front LED lights at excitation, 2 LEDs

■ Items Available to Be Set

The following items can be set through Handy Terminal:

Input type, input range, burnout, address number, communication rate, parity, data length, stop bit, protocol, alarm operating direction, relay operating direction, alarm setting, hysteresis, alarm on-delay, alarm off-delay

■ Standard Performance

Accuracy rating: ± 0.1 % of span.

However, accuracy is limited in the following cases.

Thermocouple input:

Input range is -10 to 100 mV (M range), span is under 27.5 mV, in thermally generated emf conversion; accuracy (%)=±0.1 %×27.5 mV / input span [mV]

Input range is -2.5 to 25 mV (L range), span is under 10 mV, in thermally generated emf conversion; accuracy (%)= ± 0.1 % $\times 10$ mV / input span [mV]

RTD input:

Input range is 0 to 520 Ω (H range), span is under 130 Ω (refer to the reference resistance table); accuracy (%)= ±0.1 % \times 130 Ω / input span [Ω]

Input range is 0 to 176 Ω (M range), span is under 38.6 Ω (refer to the reference resistance table); accuracy (%)= ± 0.1 % $\times 38.6$ Ω / input span [Ω]

Reference Junction Compensation Accuracy:

 ± 1 °C (except for Type R, S); ± 2 °C (Type R, S) for terminal temperature 25 °C ± 15 °C

Response Speed: 200 ms, 63 % response (10 to 90 %)

Alarm output: 350~ms (input change 10~to 90~%, alarm setting point 50~%, time till alarm output, when alarm delay setting and

hysteresis are min.)

Burnout: No up/down

Burnout time: within 60 seconds

Effect of Power Supply Voltage Fluctuation: ± 0.1 % or less of span for power supply voltage fluctuation of 15 to 30 V DC (± 20 %), 100 to 240 V AC/DC

Effect of Ambient Temperature Change: ± 0.2 % or less of span for change of 10 °C

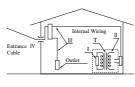
Effect of Wiring Resistance Change:

Thermocouple: $\pm 15\,\mu V$ or less of span for change of 100Ω RTD: $\pm 0.2^{\circ}C$ or less of span for change of $10\Omega/wire$.

■ Safety and EMC Standards

The following standards will be acquired.

Safety: approved by CSA1010, approved by UL3121-1.


Installation category: CAT. II (CSA1010)

Pollution degree: 2 (CSA1010)

As for the apparatus authorized, power supply voltage is limited to 15V-30VDC, and the circuit to connect is

limited to a class 2. (UL3121-1)

Category	Description	Remarks	
CAT. I	For measurements performed on circuits not directly connected to MAINS.		
CAT. II	For measurements performed on circuits directly connected to the low voltage installation.	Appliances, portable equipments, etc.	
CAT. III	For measurements performed in the building installation.	Distribution board, circuit breaker, etc.	
CAT. IV	For measurements performed at the source of the low-voltage installation.	Overhead wire, cable systems, etc.	

EMC standards: Complies with EN61326.

The above conformed instrument is only for voltage of 15 to 30 V DC $\,$

■ Power Supply and Isolation

Power Supply Rated Voltage:

100 to 240 V AC/DC = 50/60 Hz

15 to 30 V DC =

Power Supply Input Voltage: 100 to 240 V AC/DC $\stackrel{\sim}{\sim}$ (-15, +10 %) 50/60 Hz

+10 %) 30/00 HZ

15 to 30 V DC = (±20 %)

Power Dissipation: 24 V DC 2.6 W, 110 V DC 2.6 W 100 V AC 5 VA, 200 V AC 6.7 VA

Insulation Resistance: $100 \text{ M}\Omega$ /500 V DC between input, output-1, output-2, power supply, and ground

mutually

Withstand Voltage: 2000 V AC / minute between input,

(output-1, output-2), power supply, and

ground mutually

1000 V AC / minute between input and output-2, 1000 V AC / minute between output-1 and output-2 at alarm output

■ Environmental Conditions

Temperature: 0 to 50 °C

Humidity: 5 to 90 % RH (no condensation)

Ambient Condition: Avoid installation in such environments as corrosive gas like sulfide hydrogen,

dust, sea breeze and direct sunlight

Installation altitude 2000m or less above sea

level.

■ Mounting and Appearance

Construction: Compact plug-in type

Material: Modified Polyphenylene Oxide (Case body) Mounting Method: Wall, DIN rail, or dedicated base (VJ

mounting base: VJCE) mountings Connection Method: M3 screw terminal

External Dimension: 29.5×76×124.5 mm (W×H×D)

Weight: Approx.170 g

Accessories

Tag No. Label: 1 sheet Range Label: 1 sheet RJC Sensor: 1

■ Instruction Required When Ordering

• Model and suffix code

Shipped after setting the input type (selected from Table 1), input range (within available measuring range in Table 1), and burnout action as specified.

■ Factory Setting

Factory settings are as follows:

• Input type: RTD input Pt100 (ITS-90)

• Input range: 0 to 100 °C

• Burnout: Off

● When output-2 is specified as communication output

• Address No.: 01

• Communication rate: 9600 bps

Parity: EvenData length: 8 bitStop bit: 1 bitProtocol: PCLINK

● When output-2 is specified as alarm output

 Alarm operating direction: High limit alarm (alarm-1), low limit alarm (alarm-2)

• Relay operating direction:

Excitation at alarm (alarm-1/2)

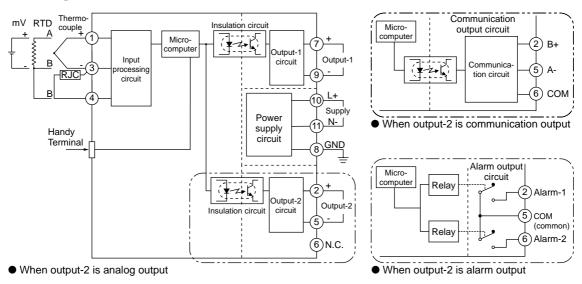
• Alarm setting: The value equivalent to 100 % (alarm-1),

The value equivalent to 0 % (alarm-2)

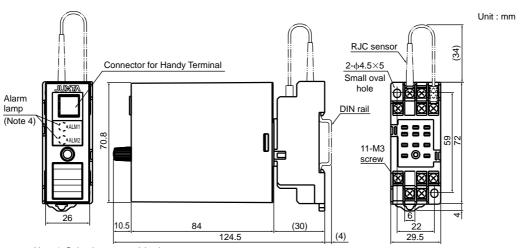
• Hysteresis: The value equivalent to 3 % (alarm-1/2)

• Alarm on-delay: 0 second (alarm-1/2)

• Alarm off-delay: 0 second (alarm-1/2)


■ Terminal Arrangement & Terminal Connection

		321
	<u>)</u> 0	
9 87		
 (11) (10) ()		0 87 00 0


Terminal No.	Signal	Thermocouple	RTD	mV input	Output-2 Analog output	Output-2 Communication output	Output-2 Alarm output
1	Input	(+)	(A)	(+)	+	-	-
2	Output-2				(+)	B (+)	ALM1
3	Input	(-) RJC	(B)	(-)	₩	-	-
4	Input		(B)	N.C.	-	←	-
5	Output-2				(-)	A (-)	СОМ
6	Output-2				N.C.	СОМ	ALM2
7	Output-1	(+)					
8	GND	GND					
9	Output-1	(-)					
10	Supply	(L+)					
11	Supply	(N-)					

Note 3: In case of one output type, output-2 is N.C.

■ Block Diagram

■ External Dimension

Note 4: Only when output-2 is alarm output